Decomposability of Polytopes
نویسندگان
چکیده
We reformulate a known characterization of decomposability of polytopes in a way which may be more computationally convenient, and offer a more transparent proof. We apply it to give new sufficient conditions for indecomposability of polytopes, and then illustrate them with some examples.
منابع مشابه
Obstructions to Weak Decomposability for Simplicial Polytopes
Provan and Billera introduced notions of (weak) decomposability of simplicial complexes as a means of attempting to prove polynomial upper bounds on the diameter of the facet-ridge graph of a simplicial polytope. Recently, De Loera and Klee provided the first examples of simplicial polytopes that are not weakly vertex-decomposable. These polytopes are polar to certain simple transportation poly...
متن کاملDecomposition of Polytopes and Polynomials
Motivated by a connection with the factorization of multivariable polynomials, we study integral convex polytopes and their integral decompositions in the sense of the Minkowski sum. We first show that deciding decomposability of integral polygons is NP-complete then present a pseudo-polynomial time algorithm for decomposing polygons. For higher dimensional polytopes, we give a heuristic algori...
متن کاملTransportation Problems and Simplicial Polytopes That Are Not Weakly Vertex-Decomposable
Provan and Billera defined the notion of weak k-decomposability for pure simplicial complexes in the hopes of bounding the diameter of convex polytopes. They showed the diameter of a weakly k-decomposable simplicial complex ã is bounded above by a polynomial function of the number of k-faces in ã and its dimension. For weakly 0-decomposable complexes, this bound is linear in the number of verti...
متن کاملThe Excess Degree of a Polytope
We define the excess degree ξ(P ) of a d-polytope P as 2f1− df0, where f0 and f1 denote the number of vertices and edges, respectively. We first prove that the excess degree of a d-polytope does not take every natural number: the smallest possible values are 0 and d − 2, and the value d − 1 only occurs when d = 3 or 5. On the other hand, for fixed d , the number of values not taken by the exces...
متن کاملLinear Programming, the Simplex Algorithm and Simple Polytopes
In the first part of the paper we survey some far reaching applications of the basis facts of linear programming to the combinatorial theory of simple polytopes. In the second part we discuss some recent developments concurring the simplex algorithm. We describe sub-exponential randomized pivot roles and upper bounds on the diameter of graphs of polytopes.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete & Computational Geometry
دوره 39 شماره
صفحات -
تاریخ انتشار 2008